Calculate the energy released in MeV in the following nuclear reaction:

$$_1^2$$
H $+_1^2$ H \rightarrow_2^3 He $+_0^1$ n

Assume that the masses of ${}_{1}^{2}H$, ${}_{2}^{3}He$ and neutron (n) respectively are 2.020, 3.0160 and 1.0087 in amu.

- **A** 14.25 MeV
- B 1.425 MeV
- **c** 142.5 MeV
- D 1425 MeV

Correct option is A)

The mass defect is the difference between the mass of reactants and the mass of products.

$$\Delta m = 2 \times m_1^2 H - m_2^3 He - m_n = (2 \times 2.020) - (3.0160 + 1.0087)$$

$$= 4.040 - 4.0247 = 0.0153$$

The energy released during the nuclear reaction is

$$\Delta E = \Delta m \times 931.48 MeV = 14.25 MeV$$